Evolutionary HMMs: a Bayesian approach to multiple alignment
نویسندگان
چکیده
MOTIVATION We review proposed syntheses of probabilistic sequence alignment, profiling and phylogeny. We develop a multiple alignment algorithm for Bayesian inference in the links model proposed by Thorne et al. (1991, J. Mol. Evol., 33, 114-124). The algorithm, described in detail in Section 3, samples from and/or maximizes the posterior distribution over multiple alignments for any number of DNA or protein sequences, conditioned on a phylogenetic tree. The individual sampling and maximization steps of the algorithm require no more computational resources than pairwise alignment. METHODS We present a software implementation (Handel) of our algorithm and report test results on (i) simulated data sets and (ii) the structurally informed protein alignments of BAliBASE (Thompson et al., 1999, Nucleic Acids Res., 27, 2682-2690). RESULTS We find that the mean sum-of-pairs score (a measure of residue-pair correspondence) for the BAliBASE alignments is only 13% lower for Handelthan for CLUSTALW(Thompson et al., 1994, Nucleic Acids Res., 22, 4673-4680), despite the relative simplicity of the links model (CLUSTALW uses affine gap scores and increased penalties for indels in hydrophobic regions). With reference to these benchmarks, we discuss potential improvements to the links model and implications for Bayesian multiple alignment and phylogenetic profiling. AVAILABILITY The source code to Handelis freely distributed on the Internet at http://www.biowiki.org/Handel under the terms of the GNU Public License (GPL, 2000, http://www.fsf.org./copyleft/gpl.html).
منابع مشابه
Using Dirichlet Mixture Priors to Derive Hidden Markov Models for Protein Familiesz
A Bayesian method for estimating the amino acid distributions in the states of a hidden Markov model (HMM) for a protein family or the columns of a multiple alignment of that family is introduced. This method uses Dirichlet mixture densities as priors over amino acid distributions. These mixture densities are determined from examination of previously constructed HMMs or multiple alignments. It ...
متن کاملUsing guide trees to construct multiple-sequence evolutionary HMMs
MOTIVATION Score-based progressive alignment algorithms do dynamic programming on successive branches of a guide tree. The analogous probabilistic construct is an Evolutionary HMM. This is a multiple-sequence hidden Markov model (HMM) made by combining transducers (conditionally normalised Pair HMMs) on the branches of a phylogenetic tree. METHODS We present general algorithms for constructin...
متن کاملwebPRC: the Profile Comparer for alignment-based searching of public domain databases
Profile-profile methods are well suited to detect remote evolutionary relationships between protein families. Profile Comparer (PRC) is an existing stand-alone program for scoring and aligning hidden Markov models (HMMs), which are based on multiple sequence alignments. Since PRC compares profile HMMs instead of sequences, it can be used to find distant homologues. For this purpose, PRC is used...
متن کاملFuzzy Hidden Markov Models: A New Approach In Multiple Sequence Alignment
This paper proposes a novel method for aligning multiple genomic or proteomic sequences using a fuzzyfied Hidden Markov Model (HMM). HMMs are known to provide compelling performance among multiple sequence alignment (MSA) algorithms, yet their stochastic nature does not help them cope with the existing dependence among the sequence elements. Fuzzy HMMs are a novel type of HMMs based on fuzzy se...
متن کاملUsing Dirichlet Mixture Priors to Derive Hidden Markov Models for Protein Families
A Bayesian method for estimating the amino acid distributions in the states of a hidden Markov model (HMM) for a protein family or the columns of a multiple alignment of that family is introduced. This method uses Dirichlet mixture densities as priors over amino acid distributions. These mixture densities are determined from examination of previously constructed HMMs or multiple alignments. It ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Bioinformatics
دوره 17 9 شماره
صفحات -
تاریخ انتشار 2001